Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2217, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472171

RESUMO

Neurotransmitter release relies on the regulated fusion of synaptic vesicles (SVs) that are tightly packed within the presynaptic bouton of neurons. The mechanism by which SVs are clustered at the presynapse, while preserving their ability to dynamically recycle to support neuronal communication, remains unknown. Synapsin 2a (Syn2a) tetramerization has been suggested as a potential clustering mechanism. Here, we used Dual-pulse sub-diffractional Tracking of Internalised Molecules (DsdTIM) to simultaneously track single SVs from the recycling and the reserve pools, in live hippocampal neurons. The reserve pool displays a lower presynaptic mobility compared to the recycling pool and is also present in the axons. Triple knockout of Synapsin 1-3 genes (SynTKO) increased the mobility of reserve pool SVs. Re-expression of wild-type Syn2a (Syn2aWT), but not the tetramerization-deficient mutant K337Q (Syn2aK337Q), fully rescued these effects. Single-particle tracking revealed that Syn2aK337QmEos3.1 exhibited altered activity-dependent presynaptic translocation and nanoclustering. Therefore, Syn2a tetramerization controls its own presynaptic nanoclustering and thereby contributes to the dynamic immobilisation of the SV reserve pool.


Assuntos
Sinapsinas , Vesículas Sinápticas , Vesículas Sinápticas/fisiologia , Sinapsinas/genética , Sinapses , Transmissão Sináptica/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas
2.
Elife ; 132024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206309

RESUMO

Protein kinases (PKs) are proteins at the core of cellular signalling and are thereby responsible for most cellular physiological processes and their regulations. As for all intracellular proteins, PKs are subjected to Brownian thermal energy that tends to homogenise their distribution throughout the volume of the cell. To access their substrates and perform their critical functions, PK localisation is therefore tightly regulated in space and time, relying upon a range of clustering mechanisms. These include post-translational modifications, protein-protein and protein-lipid interactions, as well as liquid-liquid phase separation, allowing spatial restriction and ultimately regulating access to their substrates. In this review, we will focus on key mechanisms mediating PK nanoclustering in physiological and pathophysiological processes. We propose that PK nanoclusters act as a cellular quantal unit of signalling output capable of integration and regulation in space and time. We will specifically outline the various super-resolution microscopy approaches currently used to elucidate the composition and mechanisms driving PK nanoscale clustering and explore the pathological consequences of altered kinase clustering in the context of neurodegenerative disorders, inflammation, and cancer.


Assuntos
Proteínas Quinases , Transdução de Sinais , Análise por Conglomerados , Inflamação
4.
Nat Commun ; 14(1): 7277, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949856

RESUMO

Neuronal communication relies on the release of neurotransmitters from various populations of synaptic vesicles. Despite displaying vastly different release probabilities and mobilities, the reserve and recycling pool of vesicles co-exist within a single cluster suggesting that small synaptic biomolecular condensates could regulate their nanoscale distribution. Here, we performed a large-scale activity-dependent phosphoproteome analysis of hippocampal neurons in vitro and identified Tau as a highly phosphorylated and disordered candidate protein. Single-molecule super-resolution microscopy revealed that Tau undergoes liquid-liquid phase separation to generate presynaptic nanoclusters whose density and number are regulated by activity. This activity-dependent diffusion process allows Tau to translocate into the presynapse where it forms biomolecular condensates, to selectively control the mobility of recycling vesicles. Tau, therefore, forms presynaptic nano-biomolecular condensates that regulate the nanoscale organization of synaptic vesicles in an activity-dependent manner.


Assuntos
Condensados Biomoleculares , Vesículas Sinápticas , Vesículas Sinápticas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapses/fisiologia , Neurônios/metabolismo
5.
Front Mol Neurosci ; 16: 1253954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829513

RESUMO

Introduction: Brain connectivity requires correct axonal guidance to drive axons to their appropriate targets. This process is orchestrated by guidance cues that exert attraction or repulsion to developing axons. However, the intricacies of the cellular machinery responsible for the correct response of growth cones are just being unveiled. Netrin-1 is a bifunctional molecule involved in axon pathfinding and cell migration that induces repulsion during postnatal cerebellar development. This process is mediated by UNC5 homolog receptors located on external granule layer (EGL) tracts. Methods: Biochemical, imaging and cell biology techniques, as well as syntaxin-1A/B (Stx1A/B) knock-out mice were used in primary cultures and brain explants. Results and discussion: Here, we demonstrate that this response is characterized by enhanced membrane internalization through macropinocytosis, but not clathrin-mediated endocytosis. We show that UNC5A, UNC5B, and UNC5C receptors form a protein complex with the t-SNARE syntaxin-1. By combining botulinum neurotoxins, an shRNA knock-down strategy and Stx1 knock-out mice, we demonstrate that this SNARE protein is required for Netrin1-induced macropinocytosis and chemorepulsion, suggesting that Stx1 is crucial in regulating Netrin-1-mediated axonal guidance.

6.
Sci Adv ; 9(23): eadg2248, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285437

RESUMO

Numerous viruses use specialized surface molecules called fusogens to enter host cells. Many of these viruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can infect the brain and are associated with severe neurological symptoms through poorly understood mechanisms. We show that SARS-CoV-2 infection induces fusion between neurons and between neurons and glia in mouse and human brain organoids. We reveal that this is caused by the viral fusogen, as it is fully mimicked by the expression of the SARS-CoV-2 spike (S) protein or the unrelated fusogen p15 from the baboon orthoreovirus. We demonstrate that neuronal fusion is a progressive event, leads to the formation of multicellular syncytia, and causes the spread of large molecules and organelles. Last, using Ca2+ imaging, we show that fusion severely compromises neuronal activity. These results provide mechanistic insights into how SARS-CoV-2 and other viruses affect the nervous system, alter its function, and cause neuropathology.


Assuntos
COVID-19 , Animais , Humanos , Camundongos , SARS-CoV-2/fisiologia , Neurônios , Encéfalo , Neuroglia
7.
J Neurochem ; 165(6): 791-808, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36660878

RESUMO

The traditional medicinal mushroom Hericium erinaceus is known for enhancing peripheral nerve regeneration through targeting nerve growth factor (NGF) neurotrophic activity. Here, we purified and identified biologically new active compounds from H. erinaceus, based on their ability to promote neurite outgrowth in hippocampal neurons. N-de phenylethyl isohericerin (NDPIH), an isoindoline compound from this mushroom, together with its hydrophobic derivative hericene A, were highly potent in promoting extensive axon outgrowth and neurite branching in cultured hippocampal neurons even in the absence of serum, demonstrating potent neurotrophic activity. Pharmacological inhibition of tropomyosin receptor kinase B (TrkB) by ANA-12 only partly prevented the NDPIH-induced neurotrophic activity, suggesting a potential link with BDNF signaling. However, we found that NDPIH activated ERK1/2 signaling in the absence of TrkB in HEK-293T cells, an effect that was not sensitive to ANA-12 in the presence of TrkB. Our results demonstrate that NDPIH acts via a complementary neurotrophic pathway independent of TrkB with converging downstream ERK1/2 activation. Mice fed with H. erinaceus crude extract and hericene A also exhibited increased neurotrophin expression and downstream signaling, resulting in significantly enhanced hippocampal memory. Hericene A therefore acts through a novel pan-neurotrophic signaling pathway, leading to improved cognitive performance.


Assuntos
Sistema de Sinalização das MAP Quinases , Memória Espacial , Camundongos , Animais , Transdução de Sinais , Neurônios/metabolismo , Hipocampo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Células Cultivadas
8.
Mol Psychiatry ; 28(2): 946-962, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36258016

RESUMO

Fyn is a Src kinase that controls critical signalling cascades and has been implicated in learning and memory. Postsynaptic enrichment of Fyn underpins synaptotoxicity in dementias such as Alzheimer's disease and frontotemporal lobar degeneration with Tau pathology (FTLD-Tau). The FLTD P301L mutant Tau is associated with a higher propensity to undergo liquid-liquid phase separation (LLPS) and form biomolecular condensates. Expression of P301L mutant Tau promotes aberrant trapping of Fyn in nanoclusters within hippocampal dendrites by an unknown mechanism. Here, we used single-particle tracking photoactivated localisation microscopy to demonstrate that the opening of Fyn into its primed conformation promotes its nanoclustering in dendrites leading to increased Fyn/ERK/S6 downstream signalling. Preventing the auto-inhibitory closed conformation of Fyn through phospho-inhibition or through perturbation of its SH3 domain increased Fyn's nanoscale trapping, whereas inhibition of the catalytic domain had no impact. By combining pharmacological and genetic approaches, we demonstrate that P301L Tau enhanced both Fyn nanoclustering and Fyn/ERK/S6 signalling via its ability to form biomolecular condensates. Together, our findings demonstrate that Fyn alternates between a closed and an open conformation, the latter being enzymatically active and clustered. Furthermore, pathogenic immobilisation of Fyn relies on the ability of P301L Tau to form biomolecular condensates, thus highlighting the critical importance of LLPS in controlling nanoclustering and downstream intracellular signalling events.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Condensados Biomoleculares , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Doença de Alzheimer/genética , Degeneração Lobar Frontotemporal/metabolismo
9.
Int J Mol Sci ; 22(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066896

RESUMO

Central nervous system damage caused by traumatic injuries, iatrogenicity due to surgical interventions, stroke and neurodegenerative diseases is one of the most prevalent reasons for physical disability worldwide. During development, axons must elongate from the neuronal cell body to contact their precise target cell and establish functional connections. However, the capacity of the adult nervous system to restore its functionality after injury is limited. Given the inefficacy of the nervous system to heal and regenerate after damage, new therapies are under investigation to enhance axonal regeneration. Axon guidance cues and receptors, as well as the molecular machinery activated after nervous system damage, are organized into lipid raft microdomains, a term typically used to describe nanoscale membrane domains enriched in cholesterol and glycosphingolipids that act as signaling platforms for certain transmembrane proteins. Here, we systematically review the most recent findings that link the stability of lipid rafts and their composition with the capacity of axons to regenerate and rebuild functional neural circuits after damage.


Assuntos
Axônios/fisiologia , Microdomínios da Membrana/metabolismo , Regeneração Nervosa/fisiologia , Animais , Matriz Extracelular/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo
10.
Cell Mol Life Sci ; 78(6): 2797-2820, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33095273

RESUMO

During brain development, Uncoordinated locomotion 5 (UNC5) receptors control axonal extension through their sensing of the guidance molecule Netrin-1. The correct positioning of receptors into cholesterol-enriched membrane raft microdomains is crucial for the efficient transduction of the recognized signals. However, whether such microdomains are required for the appropriate axonal guidance mediated by UNC5 receptors remains unknown. Here, we combine the use of confocal microscopy, live-cell FRAP analysis and single-particle tracking PALM to characterize the distribution of UNC5 receptors into raft microdomains, revealing differences in their membrane mobility properties. Using pharmacological and genetic approaches in primary neuronal cultures and brain cerebellar explants we further demonstrate that disrupting raft microdomains inhibits the chemorepulsive response of growth cones and axons against Netrin-1. Together, our findings indicate that the distribution of all UNC5 receptors into cholesterol-enriched raft microdomains is heterogeneous and that the specific localization has functional consequences for the axonal chemorepulsion against Netrin-1.


Assuntos
Microdomínios da Membrana/metabolismo , Receptores de Netrina/metabolismo , Netrina-1/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Colesterol/metabolismo , Colesterol 24-Hidroxilase/genética , Colesterol 24-Hidroxilase/metabolismo , Feminino , Recuperação de Fluorescência Após Fotodegradação , Células HEK293 , Humanos , Camundongos , Receptores de Netrina/genética , Neurônios/citologia , Neurônios/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
11.
Methods Mol Biol ; 2233: 265-286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33222141

RESUMO

The fusion of synaptic vesicles with the plasma membrane underpins neurotransmission. A number of presynaptic proteins play a critical role in overcoming the energy barrier inherent to the fusion of the negatively charged vesicular and plasma membranes. Emerging concepts suggest that this process is hierarchical and dependent on rapid and transient reorganization of proteins in and out of small nanoclusters located in the active zones of nerve terminals. Examining the nanoscale organization of presynaptic molecules requires super-resolution microscopy to overcome the limits of conventional light microscopy. In this chapter, we describe three super-resolution techniques that allow for the examination of the nanoscale organization of proteins within live hippocampal nerve terminals. We used (1) single-particle tracking photoactivated localization microscopy (sptPALM) to resolve the mobility and clustering of syntaxin1A (STX1A), (2) universal Point Accumulation Imaging in Nanoscale Topography (uPAINT) to study the mobility of a pool of vesicular-associated membrane protein 2 (VAMP2) transiting on the plasma membrane, and (3) subdiffractional Tracking of Internalized Molecules (sdTIM) to track VAMP2-positive recycling synaptic vesicles in conjunction with Cholera Toxin subunit B (CTB), which has recently been shown to be trafficked retrogradely from the presynapse to the cell body via signaling endosomes.


Assuntos
Exocitose/genética , Microscopia/métodos , Imagem Individual de Molécula/métodos , Vesículas Sinápticas/genética , Animais , Endocitose/genética , Hipocampo/ultraestrutura , Humanos , Camundongos , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Sinapses/genética , Sinapses/ultraestrutura , Transmissão Sináptica/genética , Vesículas Sinápticas/ultraestrutura
12.
J Neurosci ; 40(23): 4586-4595, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32341095

RESUMO

The epilepsy-linked gene SV2A, has a number of potential roles in the synaptic vesicle (SV) life cycle. However, how loss of SV2A function translates into presynaptic dysfunction and ultimately seizure activity is still undetermined. In this study, we examined whether the first SV2A mutation identified in human disease (R383Q) could provide information regarding which SV2A-dependent events are critical in the translation to epilepsy. We utilized a molecular replacement strategy in which exogenous SV2A was expressed in mouse neuronal cultures of either sex, which had been depleted of endogenous SV2A to mimic the homozygous human condition. We found that the R383Q mutation resulted in a mislocalization of SV2A from SVs to the plasma membrane, but had no effect on its activity-dependent trafficking. This SV2A mutant displayed reduced mobility when stranded on the plasma membrane and reduced binding to its interaction partner synaptotagmin-1 (Syt1). Furthermore, the R383Q mutant failed to rescue reduced expression and dysfunctional activity-dependent trafficking of Syt1 in the absence of endogenous SV2A. This suggests that the inability to control Syt1 expression and trafficking at the presynapse may be key in the transition from loss of SV2A function to seizure activity.SIGNIFICANCE STATEMENT SV2A is a synaptic vesicle (SV) protein, the absence or dysfunction of which is linked to epilepsy. However, the series of molecular events that result in this neurological disorder is still undetermined. We demonstrate here that the first human mutation in SV2A identified in an individual with epilepsy displays reduced binding to synaptotagmin-1 (Syt1), an SV protein essential for synchronous neurotransmitter release. Furthermore, this mutant cannot correct alterations in both Syt1 expression and trafficking when expressed in the absence of endogenous SV2A (to mimic the homozygous human condition). This suggests that the inability to control Syt1 expression and trafficking may be key in the transition from loss of SV2A function to seizure activity.


Assuntos
Epilepsia/genética , Glicoproteínas de Membrana/genética , Mutação de Sentido Incorreto/fisiologia , Proteínas do Tecido Nervoso/genética , Transporte Proteico/fisiologia , Sinaptotagmina I/biossíntese , Sinaptotagmina I/genética , Animais , Células Cultivadas , Epilepsia/metabolismo , Feminino , Expressão Gênica , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/deficiência
13.
Front Mol Neurosci ; 13: 56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32317932

RESUMO

Nystatin is a pharmacological agent commonly used for the treatment of oral, mucosal and cutaneous fungal infections. Nystatin has also been extensively applied to study the cellular function of cholesterol-enriched structures because of its ability to bind and extract cholesterol from mammalian membranes. In neurons, cholesterol level is tightly regulated, being essential for synapse and dendrite formation, and axonal guidance. However, the action of Nystatin on axon regeneration has been poorly evaluated. Here, we examine the effect of Nystatin on primary cultures of hippocampal neurons, showing how acute dose (minutes) of Nystatin increases the area of growth cones, and chronic treatment (days) enhances axon length, axon branching, and axon regeneration post-axotomy. We describe two alternative signaling pathways responsible for the observed effects and activated at different concentrations of Nystatin. At elevated concentrations, Nystatin promotes growth cone expansion through phosphorylation of Akt; whereas, at low concentrations, Nystatin enhances axon length and regrowth by increasing nitric oxide levels. Together, our findings indicate new signaling pathways of Nystatin and propose this compound as a novel regulator of axon regeneration.

14.
J Neurosci ; 39(40): 7976-7991, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31363064

RESUMO

Alzheimer's disease (AD) is associated with the cleavage of the amyloid precursor protein (APP) to produce the toxic amyloid-ß (Aß) peptide. Accumulation of Aß, together with the concomitant inflammatory response, ultimately leads to neuronal death and cognitive decline. Despite AD progression being underpinned by both neuronal and immunological components, therapeutic strategies based on dual targeting of these systems remains unexplored. Here, we report that inactivation of the p110δ isoform of phosphoinositide 3-kinase (PI3K) reduces anterograde axonal trafficking of APP in hippocampal neurons and dampens secretion of the inflammatory cytokine tumor necrosis factor-alpha by microglial cells in the familial AD APPswe/PS1ΔE9 (APP/PS1) mouse model. Moreover, APP/PS1 mice with kinase-inactive PI3Kδ (δD910A) had reduced Aß peptides levels and plaques in the brain and an abrogated inflammatory response compared with APP/PS1 littermates. Mechanistic investigations reveal that PI3Kδ inhibition decreases the axonal transport of APP by eliciting the formation of highly elongated tubular-shaped APP-containing carriers, reducing the levels of secreted Aß peptide. Importantly, APP/PS1/δD910A mice exhibited no spatial learning or memory deficits. Our data highlight inhibition of PI3Kδ as a new approach to protect against AD pathology due to its dual action of dampening microglial-dependent neuroinflammation and reducing plaque burden by inhibition of neuronal APP trafficking and processing.SIGNIFICANCE STATEMENT During Alzheimer's disease (AD), the accumulation of the toxic amyloid-ß (Aß) peptide in plaques is associated with a chronic excessive inflammatory response. Uncovering new drug targets that simultaneously reduce both Aß plaque load and neuroinflammation holds therapeutic promise. Using a combination of genetic and pharmacological approaches, we found that the p110δ isoform of phosphoinositide 3-kinase (PI3K) is involved in anterograde trafficking of the amyloid precursor protein in neurons and in the secretion of tumor necrosis factor-alpha from microglial cells. Genetic inactivation of PI3Kδ reduces Aß plaque deposition and abrogates the inflammatory response, resulting in a complete rescue of the life span and spatial memory performance. We conclude that inhibiting PI3Kδ represents a novel therapeutic approach to ameliorate AD pathology by dampening plaque accumulation and microglial-dependent neuroinflammation.


Assuntos
Doença de Alzheimer/prevenção & controle , Precursor de Proteína beta-Amiloide/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Disfunção Cognitiva/genética , Disfunção Cognitiva/prevenção & controle , Encefalite/genética , Encefalite/prevenção & controle , Placa Amiloide/genética , Placa Amiloide/prevenção & controle , Fator de Necrose Tumoral alfa/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Transporte Axonal/genética , Citocinas/metabolismo , Feminino , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Mutação Puntual , Cultura Primária de Células , Memória Espacial
15.
Elife ; 82019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31237563

RESUMO

The Src kinase Fyn plays critical roles in memory formation and Alzheimer's disease. Its targeting to neuronal dendrites is regulated by Tau via an unknown mechanism. As nanoclustering is essential for efficient signaling, we used single-molecule tracking to characterize the nanoscale distribution of Fyn in mouse hippocampal neurons, and manipulated the expression of Tau to test whether it controls Fyn nanoscale organization. We found that dendritic Fyn exhibits at least three distinct motion states, two of them associated with nanodomains. Fyn mobility decreases in dendrites during neuronal maturation, suggesting a dynamic synaptic reorganization. Removing Tau increases Fyn mobility in dendritic shafts, an effect that is rescued by re-expressing wildtype Tau. By contrast, expression of frontotemporal dementia P301L mutant Tau immobilizes Fyn in dendritic spines, affecting its motion state distribution and nanoclustering. Tau therefore controls the nanoscale organization of Fyn in dendrites, with the pathological Tau P301L mutation potentially contributing to synaptic dysfunction by promoting aberrant Fyn nanoclustering in spines.


Assuntos
Espinhas Dendríticas/metabolismo , Demência Frontotemporal/patologia , Hipocampo/patologia , Proteínas Mutantes/metabolismo , Multimerização Proteica , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas tau/metabolismo , Animais , Demência Frontotemporal/genética , Camundongos , Proteínas Mutantes/genética , Proteínas tau/genética
16.
Front Cell Neurosci ; 13: 40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809129

RESUMO

Axonal growth during normal development and axonal regeneration rely on the action of many receptor signaling systems and complexes, most of them located in specialized raft membrane microdomains with a precise lipid composition. Cholesterol is a component of membrane rafts and the integrity of these structures depends on the concentrations present of this compound. Here we explored the effect of cholesterol depletion in both developing neurons and regenerating axons. First, we show that cholesterol depletion in vitro in developing neurons from the central and peripheral nervous systems increases the size of growth cones, the density of filopodium-like structures and the number of neurite branching points. Next, we demonstrate that cholesterol depletion enhances axonal regeneration after axotomy in vitro both in a microfluidic system using dissociated hippocampal neurons and in a slice-coculture organotypic model of axotomy and regeneration. Finally, using axotomy experiments in the sciatic nerve, we also show that cholesterol depletion favors axonal regeneration in vivo. Importantly, the enhanced regeneration observed in peripheral axons also correlated with earlier electrophysiological responses, thereby indicating functional recovery following the regeneration. Taken together, our results suggest that cholesterol depletion per se is able to promote axonal growth in developing axons and to increase axonal regeneration in vitro and in vivo both in the central and peripheral nervous systems.

17.
PLoS Genet ; 14(6): e1007432, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29912942

RESUMO

Axonal growth and guidance rely on correct growth cone responses to guidance cues. Unlike the signaling cascades that link axonal growth to cytoskeletal dynamics, little is known about the crosstalk mechanisms between guidance and membrane dynamics and turnover. Recent studies indicate that whereas axonal attraction requires exocytosis, chemorepulsion relies on endocytosis. Indeed, our own studies have shown that Netrin-1/Deleted in Colorectal Cancer (DCC) signaling triggers exocytosis through the SNARE Syntaxin-1 (STX1). However, limited in vivo evidence is available about the role of SNARE proteins in axonal guidance. To address this issue, here we systematically deleted SNARE genes in three species. We show that loss-of-function of STX1 results in pre- and post-commissural axonal guidance defects in the midline of fly, chick, and mouse embryos. Inactivation of VAMP2, Ti-VAMP, and SNAP25 led to additional abnormalities in axonal guidance. We also confirmed that STX1 loss-of-function results in reduced sensitivity of commissural axons to Slit-2 and Netrin-1. Finally, genetic interaction studies in Drosophila show that STX1 interacts with both the Netrin-1/DCC and Robo/Slit pathways. Our data provide evidence of an evolutionarily conserved role of STX1 and SNARE proteins in midline axonal guidance in vivo, by regulating both pre- and post-commissural guidance mechanisms.


Assuntos
Neurogênese/genética , Sintaxina 1/genética , Sintaxina 1/fisiologia , Animais , Axônios/metabolismo , Quimiotaxia/genética , Embrião de Galinha , Drosophila/genética , Proteínas de Drosophila/genética , Exocitose/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/embriologia , Netrina-1/genética , Netrina-1/metabolismo , Neurogênese/fisiologia , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/fisiologia , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transdução de Sinais/genética , Medula Espinal/embriologia , Medula Espinal/metabolismo
18.
Nat Rev Neurol ; 14(1): 22-39, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29242522

RESUMO

Most neurodegenerative diseases are proteinopathies, which are characterized by the aggregation of misfolded proteins. Although many proteins have an intrinsic propensity to aggregate, particularly when cellular clearance systems start to fail in the context of ageing, only a few form fibrillar aggregates. In Alzheimer disease, the peptide amyloid-ß (Aß) and the protein tau aggregate to form plaques and tangles, respectively, which comprise the histopathological hallmarks of this disease. This Review discusses the complexity of Aß biogenesis, trafficking, post-translational modifications and aggregation states. Tau and its various isoforms, which are subject to a vast array of post-translational modifications, are also explored. The methodological advances that revealed this complexity are described. Finally, the toxic effects of distinct species of tau and Aß are discussed, as well as the concept of protein 'strains', and how this knowledge can facilitate the development of early disease biomarkers for stratifying patients and validating new therapies. By targeting distinct species of Aß and tau for therapeutic intervention, the way might be paved for personalized medicine and more-targeted treatment strategies.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Biomarcadores/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/terapia , Humanos
19.
Nat Protoc ; 12(12): 2590-2622, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29189775

RESUMO

Our understanding of endocytic pathway dynamics is restricted by the diffraction limit of light microscopy. Although super-resolution techniques can overcome this issue, highly crowded cellular environments, such as nerve terminals, can also dramatically limit the tracking of multiple endocytic vesicles such as synaptic vesicles (SVs), which in turn restricts the analytical dissection of their discrete diffusional and transport states. We recently introduced a pulse-chase technique for subdiffractional tracking of internalized molecules (sdTIM) that allows the visualization of fluorescently tagged molecules trapped in individual signaling endosomes and SVs in presynapses or axons with 30- to 50-nm localization precision. We originally developed this approach for tracking single molecules of botulinum neurotoxin type A, which undergoes activity-dependent internalization and retrograde transport in autophagosomes. This method was then adapted to localize the signaling endosomes containing cholera toxin subunit-B that undergo retrograde transport in axons and to track SVs in the crowded environment of hippocampal presynapses. We describe (i) the construction of a custom-made microfluidic device that enables control over neuronal orientation; (ii) the 3D printing of a perfusion system for sdTIM experiments performed on glass-bottom dishes; (iii) the dissection, culturing and transfection of hippocampal neurons in microfluidic devices; and (iv) guidance on how to perform the pulse-chase experiments and data analysis. In addition, we describe the use of single-molecule-tracking analytical tools to reveal the average and the heterogeneous single-molecule mobility behaviors. We also discuss alternative reagents and equipment that can, in principle, be used for sdTIM experiments and describe how to adapt sdTIM to image nanocluster formation and/or tubulation in early endosomes during sorting events. The procedures described in this protocol take ∼1 week.


Assuntos
Técnicas de Cultura de Células/métodos , Endocitose , Dispositivos Lab-On-A-Chip , Neurônios/citologia , Imagem Óptica/métodos , Animais , Técnicas de Cultura de Células/instrumentação , Sobrevivência Celular , Células Cultivadas , Desenho de Equipamento , Hipocampo/citologia , Imagem Óptica/instrumentação , Perfusão/instrumentação , Perfusão/métodos , Impressão Tridimensional , Ratos , Ratos Sprague-Dawley , Transfecção/instrumentação , Transfecção/métodos
20.
Sci Rep ; 7: 42395, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186199

RESUMO

The voltage-dependent potassium channel Kv1.3 plays essential physiological functions in the immune system. Kv1.3, regulating the membrane potential, facilitates downstream Ca2+ -dependent pathways and becomes concentrated in specific membrane microdomains that serve as signaling platforms. Increased and/or delocalized expression of the channel is observed at the onset of several autoimmune diseases. In this work, we show that adenosine (ADO), which is a potent endogenous modulator, stimulates PKC, thereby causing immunosuppression. PKC activation triggers down-regulation of Kv1.3 by inducing a clathrin-mediated endocytic event that targets the channel to lysosomal-degradative compartments. Therefore, the abundance of Kv1.3 at the cell surface decreases, which is clearly compatible with an effective anti-inflammatory response. This mechanism requires ubiquitination of Kv1.3, catalyzed by the E3 ubiquitin-ligase Nedd4-2. Postsynaptic density protein 95 (PSD-95), a member of the MAGUK family, recruits Kv1.3 into lipid-raft microdomains and protects the channel against ubiquitination and endocytosis. Therefore, the Kv1.3/PSD-95 association fine-tunes the anti-inflammatory response in leukocytes. Because Kv1.3 is a promising multi-therapeutic target against human pathologies, our results have physiological relevance. In addition, this work elucidates the ADO-dependent PKC-mediated molecular mechanism that triggers immunomodulation by targeting Kv1.3 in leukocytes.


Assuntos
Endocitose , Canal de Potássio Kv1.3/metabolismo , Proteína Quinase C/metabolismo , Ubiquitinação , Adenosina/farmacologia , Animais , Clatrina/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Regulação para Baixo/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Células HEK293 , Humanos , Lipopolissacarídeos/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Camundongos , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Ratos , Acetato de Tetradecanoilforbol/farmacologia , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...